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Abstract

The E821 experiment made the simplifying assumption that the detector acceptance was linearly
dependent on the muon position at the time of decay. Since the acceptance as a function of position
can be expanded in a power series, only up to the first-order term was used. However, in E989 an
increase in precision is needed so the linear dependence assumption is no longer sufficient. This
project aimed to determine if the number of detections has a higher-order dependence on the muons’
x-positions at the time of decay while studying various relationships between positrons and gammas
that contacted the calorimeters. In this work, the dependence was studied analytically for a generic
beam shape and numerically for multiple beam shapes, then compared to particle tracking results.
Current results show that there is a quadratic influence of about 10%, which is neither a large
influence nor is it negligible, indicating that ART is required for higher-precision.

1 Introduction

The basic physics equation to describe the rate of detected positrons is [1]

dN(t;Eth)

dt
= N0e

−t/γτµ [1 +Acos(ωat+ φ)] (1)

where Eth is the energy threshold, N0 is the normalization, A is the asymmetry, and φ is the initial
phase. The fit was modified for E821 to account for the coherent betatron oscillation (CBO) of the
muon beam:

N0 → N0

[
1 +ANe

−t/τCBOcos(ωCBOt+ φN )
]

(2)

A→ A
[
1 +AAe

−t/τCBOcos(ωCBOt+ φA)
]

(3)

φ→ φ+Aφe
−t/τCBOcos(ωCBOt+ φφ) (4)

Here we will study N0 (Eq. 2). For clarity and simplicity, N0 will be referred to as ND and ωCBO
will simply be ω. The section of Eq. 2 inside the brackets will be referenced as the acceptance, AD.
Generally, the detector acceptance is a function of x, x′, y, y′, Sx, etc... We study the x dependence in
this note. AD can be expanded in a power series:

AD(x) = k0 + k1x+ k2x
2 + ... (5)

where ki are constants. In E821 only the first two terms were used, here we will add in the quadratic
term. Note that Eq. 2 is a function of time and Eq. 5 is a function of x, in reality the position x is a
function of the average particle position x̄ = x̄(t) and the beam width σ = σ(t).
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We are assuming that x̄(t) and σ(t) can each be expanded into a Fourier series:

x̄(t) = x0 +

∞∑
N=1

fx̄N (t)Ax̄Ncos(ωNt+ φx̄N )

σ(t) = σ0 +

∞∑
N=1

fσN (t)AσNcos(ωNt+ φσN )

We will only analyze the first ω term in these series as seen in Eqs. 6, 7

x̄(t) = x0 + fx̄(t)Axcos(ωt+ φx) (6)

σ(t) = σ0 + fσ(t)Aσcos(ωt+ φσ) (7)

where Ax, Aσ are constants and σ0 ≥ Aσ. fx̄(t), fσ(t) are functions that will be provided by the beam
dynamics group. A current version can be found in Ref. [2].

Combining g(x) (the particle distribution function for the beam) with Eq. 5, we can state the
general form of the equation used to find ND (the number of particles detected) as

ND(t) =

∫
g(x)AD(x) dx. (8)

Although ND(t) does not show an explicit time dependence in the above equation, after integrating
and substituting in Eqs. 6 and 7, there will be an explicit time dependence.

1.1 Storage Ring Introduction

In section 4, we will look at particle tracking through the storage ring where positrons created from the
muon decay are tracked and investigated. There is a near-constant magnetic field through the beam
line around the entire ring set so that the muons travel in a circle when they are at a momentum of
3.094 GeV/c. The positrons have less momentum and therefore are more strongly accelerated by the
magnetic field so they arc inward towards the center of the ring. As they travel, many of them pass
through various materials, such as the electrodes, or other parts of the ring before possibly contacting a
calorimeter (Fig. 1. This interaction can lead to gamma production via Bremsstrahlung and subsequent
pair-production from the high-energy gammas as they pass through the matter.

2 Analytic Analysis

2.1 Constant Term in Eq. 5

If we set AD(x) = k0 we can integrate Eq. 8 to get simply

ND(t) = k0Ne (9)

where Ne is the total number of positrons. Taking the Fourier transform clearly gives no frequencies.

2.2 Linear Term

If we set AD(x) = k1x we can integrate Eq. 8 to get

ND(t) = k1Nex̄ = k1Ne(x0 + fx̄(t)Axcos(ωt+ φx)). (10)

where x̄ is from Eq. 6. We can expand this and get a constant term and a cos(ωt+φx) term. Applying
the Fourier transform gives us a single frequency at f = ω/2π. It should also be noted that there is no
dependence on σ.
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(a) Single section of the muon storage ring show-
ing the optimal beam path and the calorimeters.
The calorimeters repeat like this around the entire
ring giving a total of 24. Image courtesy of “The
Brookhaven muon (g-2) storage ring high voltage
quadrupoles” [3].

(b) Looking through a quadrupole, shown as solid
lines parallel to and on both sides of the beam path
in Fig. 1a. The labeled elements are those that the
positrons and gammas can pass through.

Figure 1: Section of muon storage ring and relevant internal parts.

2.3 Quadratic Term

If we set AD(x) = k2x
2 we can integrate Eq. 8 to get

ND(t) =
1

20
k3Neσ

2 + k3Nex̄
2 (11)

From this we can get a complete equation for ND

ND(t) = Ne[k0 + k1x̄+ k2(x̄2 +
1

20
σ2)] (12)

substituting in Eqs. 6 and 7 gives

ND(t) =
1

20
k3Neσ

2
0 + k3Nex

2
0 +

1

10
k3Neσ0cos(ωt+ φσ) +

1

20
k3Necos2(ωt+ φσ)+

2k3Nex0cos(ωt+ φx) + k3Necos2(ωt+ φx) (13)

that we can simplify by folding multiple constant coefficients into single constants and transforming the
cos2() into something more useful.

ND(t) = Ne[(A0x
2
0 +A1σ

2
0) +B0fx(t)cos(ωt+ φx) +B1fσ(t)cos(ωt+ φσ)+

C0(fx(t))2cos(2ωt+ φx) + C1(fσ(t))2cos(2ωt+ φσ)]. (14)

When we take the Fourier transform of Eq. 14, φx, φσ become constant coefficients and therefore
do not affect the frequencies. After the transform we get frequencies f = ω/2π, f = 2(ω/2π).

Although the frequencies found here are in agreement with a prior analytical analysis [?], this note
finds a different final equation. The reason for this is that the previous analysis done assumed equations
for x̄ and σ of

x̄ = x0f(t)[1 +Ax̄cos(ωt)]
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σ = σ0f(t)[1 +Aσcos(ωt)]

which has the decoherence function f(t) attached to the x0 and σ0 terms, where in this note, they are
not attached (Eq. 6, 7).

3 Numeric Analysis

Here we will study three different beam shape functions, a constant particle distribution, a quadratic,
and a Gaussian. Studying multiple distributions is done because the actual beam shape is not a perfectly
fit distribution but some combination of them. The constants k0, k1, k2 used below in the acceptance
function AD were found from fitting the tracking data in section 4, “Muon Decay Tracking”. We will
be skipping the analysis of the constant acceptance term from Eq. 5.

Note: It’s important to keep in mind that the constants ki used below will change as more data is
taken and assumptions are removed as discussed in section 4.

3.1 Constant Distribution

Let’s start by studying a constant particle distribution function

g(x) = p. (15)

where p is some constant.

Linear Term from the Expansion (Eq. 5) Using the linear acceptance function, AD(x) = k0+k1x,
and combining it with our constant distribution function, we can get a function for ND

ND(t) =

∫
a p (k0 + k1x) dx (16)

where a is a normalizing factor to ensure the total number of particles doesn’t change with each step
in the numerical integration process. Integrating numerically and taking the Fourier transform we get
Fig. 2. We can see that changing the beam width σ does not have an effect on the acceptance, unlike
changing the beam position x̄. The frequency is about f ≈ 0.6 MHz. The CBO found from beam
structure plots [4] was about (6π/5) × 106 rad/s. Therefore the final acceptance containing a cos (ωt)
term, with no higher-order terms, should give a frequency of f ≈ 3/5 MHz, which is what we have
found.

Quadratic Term from the Expansion Now Let’s assume AD depends quadratically on position
giving us the general function

AD = k0 + k1 + k2x
2 (17)

which allows us to set up the new function for ND:

ND(t) =

∫
a p(k0 + k1 + k2x

2) dx (18)

which, after integrating and taking the Fourier transform, provides us with Fig. 3 where we get 2
frequencies. The frequencies found are at f1 ≈ 0.6 MHz, f2 ≈ 1.2 MHz. These are in line with the
acceptance function containing a cos (ωt) term and a cos (2ωt) term, with no higher-order terms. We
can also see that the amplitude of the 2nd-order cosine term is much smaller than the 1st-order term.
This indicates that even if a quadratic dependence exists, it should be much smaller than the linear
dependence.
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(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.

Figure 2: Constant distribution, linear term

(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.
The constant k2 was multiplied by 100 for this plot
to show where the second frequency resides (not dis-
tinguishable with the actual value of k0)

Figure 3: Constant distribution, quadratic term

3.2 Quadratic Distribution

Now let’s study the situation where the beam has a quadratic distribution

g(x) = a(x− x̄)2 + b (19)

where x̄ is the optimal beam path location described by Eq. 6, and a and b depend on σ (Eq. 7), the
beam distribution width, and are renormalized with each step through time so that when the function
is integrated over x, we get the correct number of particles. We will look at this distribution in the
exact same way as the linear distribution above.

Linear Term from the Expansion Equation (Eq. 5) Let’s assume AD depends linearly on
position giving us
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AD = k0 + k1x (20)

Plugging Eqs. 20 and 19 into Eq. 8 gives us an equation to find ND

ND =

∫
(a(x− x̄)2 + b)(k0 + k1x) dx (21)

where a and b are updated each step in the integration process to ensure the total number of particles
remains constant. Once again, we numerically integrate the above equation and get results found in
Fig. 4. As with the linear distribution function, we get no change in the acceptance due to a change in
the beam width and only one frequency, f ≈ 0.6 MHz, from changing the beam center location.

(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.

Figure 4: Quadratic distribution, linear term

Quadratic Term from the Expansion We will use the same equation for acceptance as we did
above in Eq. 17. We can now form our equation to find ND,

ND =

∫ [
(a(x− x̄)2 + b)

(
k0 + k1x+ k2x

2
)]

dx (22)

that we can integrate and take the Fourier transform of to get Fig. 5. We see the same results as we
did for the quadratic term with the constant distribution above: f1 ≈ 0.6 MHz, f2 ≈ 1.2 MHz and the
magnitude of f1 >> f2. Note that the magnitudes of the frequencies found can vary slightly depending
on the values of the constants entered into Eq. 22 (however the frequencies themselves don’t change).

3.3 Gaussian Distribution

Now let’s study the situation where the beam has a Gaussian distribution

g(x) = a · 1√
2πσ2

e−
(x−x̄)2

2σ2 (23)

where a is the normalization constant to keep the correct number of particles in the beam. We will look
at this distribution in the exact same way as the other two distributions above.
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(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.
As before k2 was multiplied by 100.

Figure 5: Quadratic distribution, quadratic term

Linear Term from the Expansion As before, we can set up the equation for ND as

ND =

∫
g(x)(k0 + k1x) dx (24)

that we integrate and find the Fourier transform of to get the results in Fig. 7. Once again, as with
the other two beam shapes, we see only a single frequency at f ≈ 0.6 MHz.

(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.

Figure 6: Quadratic distribution, quadratic term

Quadratic Term from the Expansion The last situation we are studying here is that of the
Gaussian distribution with a quadratic dependence. We can form our equation to find ND,

ND =

∫
g(x)(k0 + k1x+ k2x

2) dx (25)

which gives us Fig. 7. Here we see something new, in addition to the two frequencies f1 ≈ 0.6 MHz
and f2 ≈ 1.2 MHz that we’ve seen before, we also get others at fn ≈ 0.6 MHz ∗ n where n is a positive
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integer. The possible values of n are not fully known as the amplitude of the frequency decreases rapidly
with increasing n so only n = 3 can easily be seen on the plot here but more can be found upon further
examination. There are two mentionable concepts relating to these extra frequencies:

1. It is currently unclear if the extra frequencies represent real physical phenomena or not. It is
possible they are due to mathematical inaccuracies that arise from the edges of the Gaussian
function being cut off (the actual beam shape does not have infinite tails as the Gaussian function
represents it as having), coupled with the non-linear nature of the quadratic dependence. When
this was investigated analytically, no solution was found when attempting to take the Fourier
transform of Eq. 25. In contrast, analytical results for all other beam shapes gave results equal
to the numerical results shown here.

2. The amplitudes of the frequencies with n > 1 are very small, especially so at n > 2. Even if they
represent a real physical phenomenon, their influence is incredibly small.

(a) Top: Particles detected due changing x̄ (σ =
constant). Middle: Particles detected due changing
σ (x̄ = constant). Bottom: Particles detected due
changing both x̄ and σ.

(b) Discrete Fourier Transform of particles detected.
As before, k2 was multiplied by 100.

Figure 7: Quadratic distribution, quadratic term

4 Muon Decay Tracking

4.1 Methods

Positrons of energies greater than 1.8 GeV [1] created by muon decay were tracked using Python as
they curled towards the center of the ring due to the Lorentz force. Sometimes they passed through ring
material possibly losing energy due to Bremsstrahlung. They were tracked until they either lost too
much energy to be useful (< 0.2 GeV) or were ’killed’ by either hitting the calorimeter (front or edge)
or entering the inner part of the ring. In addition to Bremsstrahlung, pair-production events were taken
into consideration and their by-products were also tracked. The muon phase-space data that provided
the all possible positron initial conditions at the time of the muon decay can be seen in Appendix A.

The muon data set used (provided by D. Rubin) has 5171 muons taken at 100 µs after injection,
however, to get lower statistical uncertainties, and allowed by the randomness involved in the decay
process, this data set was used almost 8 times to get a total of 44732 initial positrons.

4.1.1 Simplifying Assumptions

Some simplifying assumptions were made, which are discussed here. In time, these will be removed.
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Electric and Magnetic Fields The electric field is assumed to only exist inside the quads and the
magnetic field is assumed to be constant everywhere. In reality, there is a non-zero electric field outside
the quads and the magnetic field weakens and takes on a non-zero radial field.

Bremsstrahlung The gamma momentum vector released via Bremsstrahlung was assumed to be
parallel to the particle momentum vector [5].

Compton Scattering Due to the high-energy of the gammas produced from Bremsstrahlung, Comp-
ton scattering was ignored [6].

Ring Geometries Two of the storage ring structures, high-voltage standoffs and standoff plates, were
geometrically approximated by allowing them to ’bend’ radially around the ring (to greatly simplify
their coding). However, due to their small sizes, this approximation causes deviations of only small
fractions of a millimeter from their true shapes. In addition, the curls at the edges of the electrodes
were not added as their geometries are complicated to code. This assumption is acceptable as the curls
are very small compared to the size of the electrodes themselves.

Trolley Rails Due to the odd shape (being very difficult to represent digitally) and relatively large
thickness, it was assumed that if any particle or gamma made contact with a trolley rail, the particle
or gamma would no longer be tracked, i.e. it was ’killed’. This is a valid assumption because 1) the
rails were large enough to cause a very large reduction in energy of the particle passing through them
(preventing them from contacting the calorimeter), and 2) only about 0.2% of particles make contact
with them.

4.2 Results

Table 1 gives the aggregate results of the tracked positrons and gammas, table 2 gives the particle
tracking results, and table 3 gives the photon tracking results.

Table 1: 43888 total muon decays were tracked (about 8.5 repeat uses of the muon data set). The
average contact angle the particles made with the calorimeters was ≈ 82 deg. The average contact
angle the gammas made with the calorimeters was ≈ 87.7 deg.

Total # of
Tracked Positrons

Total # of
Bremsstrahlung

Events

Total # of
Pair-Production

Events

Total # of
Calorimeter Hits

by Positrons

Total # of
Calorimeter Hits

by Gammas
44310 9510 422 34328 (≈ 77%) 998 (≈ 10%)

Table 2: Table gives the number of positrons that contacted a certain element, some positrons contacted
more than one element.

Location
Positron
Contacts

% of
Total Contacts

% of
Total Positrons

Gammas
Created

% of
Total Gammas

Quad Electrode 15936 68% 36% 5999 63%
Cage Plate 3671 16% 8% 2290 24%

HV Standoff 2048 9% 5% 868 9%
HV Standoff Screw 471 2% 1% 353 4%

Trolley Rail 1293 5% 3% N/A N/A
Total 34328 100% 77% 9510 100%
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Table 3: Tables gives the number of pair-production events by location. 998 out of 9510 total gammas
contacted the calorimeter (≈ 10%).

Location
Pair-Production

Events
% of

Total P.P. Events
% of

Total Gammas
Electrodes 290 69% 3%

Cage Plates 80 19% 0.8%
HV Standoffs 34 8% 0.4%

HV Standoff Screws 18 4% 0.2%
Total 422 100% 4.5%

Fig. 8 gives the results of the position on the calorimeter where the particles and photons made
contact. Fig. 10a samples 10 positrons and their associated gammas and plots them together on the
calorimeter front surface, showing their separation. Fig. 10b shows how the gamma energy affects the
distance on the front calorimeter between it and its parent positron. There is no significant correlation
between the energy of the gamma produced and its separation distance from its parent positron on the
calorimeter.

(a) Position on the calorimeter where the
particles made contact. The blue rectan-
gle represents the edge of the calorimeter.

(b) Position on the calorimeter where the
photons made contact. The blue rectangle
represents the edge of the calorimeter.

Figure 8: Calorimeter contact data for the positrons.

(a) A plot showing the distance between
positron/gamma pair contact points on
the front of the calorimeter as a function
of the positron momentum at the time of
calorimeter contact.

(b) This plot shows the dominance of the
cage plate. The green points now in-
clude positrons that passed through the
cage plate and possibly another element
and the orange now is only for those that
passed through multiple elements but not
the cage plate.

Figure 9: Calorimeter contact data for positrons and gammas they created if both the positron and the
gamma contacted the front of the calorimeter (referred to as a positron/gamma pair).
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(a) Sample set of positrons that contacted
the calorimeter front and also created
a gamma that contacted the calorimeter
front. Gammas are red, positrons are
blue, and the blue line connects the ele-
ments in each pair.

(b) Plot of distance on the calorimeter
front between a positron and its associ-
ated gamma in the positron/gamma pair
as a function of the gamma energy.

Figure 10: Calorimeter contact data for positrons and gammas they created.

Fig. 11 shows the energy distributions of all the created gammas and those that contacted the
calorimeter. The energy allowed during Bremsstrahlung was > 0.04 GeV but only those > 0.2 GeV
were tracked. This is primarily because below 0.2 GeV, Compton scattering becomes non-negligible
[7] and Compton scattering is currently not an included effect in the tracking. In addition, it already
requires 9 gammas and particles of 0.2 GeV combined to reach the 1.8 GeV threshold.

(a) Momentum distributions of the
positrons. Only ’muon decayed’ positrons
are shown, pair-produced positrons are
not included here. ’Concact’ refers to
those that contacted the calorimeter.

(b) Energy distributions of the pho-
tons. Photon energy > 0.04 GeV was
allowed during Bremsstralung but only
those above 0.2 GeV were tracked. ’Con-
cact’ refers to those that contacted the
calorimeter.

Figure 11: Energy and momentum distributions for gammas and positrons both at birth and for those
that contacted the calorimeter.

The calorimeter acceptance was then calculated and plotted. This was done by first splitting the
positrons into 2 parts, those that passed through an electrode and those that did not. Next, each of
the two sections was further split by the starting x-position range into 8 sections of 1 cm each then for
each section, applying the following formula to find the acceptance A:

A =
D

N
(26)
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where D is the number of detected particles for that section and N is the total number of particles
that also started in that 1 cm wide section and that either passed through or missed the electrodes,
depending on what is being plotted. Fig. 12 shows the results.

(a) Positrons that passed through an elec-
trode.

(b) Positrons that did not pass through an
electrode.

Figure 12: Acceptance for each 1 cm section where ‘Total’ in the y-axis refers to the total number of
muons inside the 1 cm wide section at the time of decay.

We can see that the acceptance is currently consistent with linear. As assumptions are removed
from the study and more data is studied, a larger quadratic dependency may be found.

5 Combining Results

We now need to combine the fitting functions we found in the tracking section with the solutions for
both linear and quadratic expansion terms found from our analytic investigation. To do this we will
take the constants for linear and quadratic fits for the acceptance vs. position plots in Fig. 12 and
insert them into the equation for ND (Eq. 12). The values of x̄ ≈ 0.45 mm and σ ≈ 2.9 mm come 30
µs after injection (data provided by David Rubin [2]).

Table 4 gives the influence of the quadratic term as it relates to both those positrons that pass
through matter or avoid all matter entirely. If positrons do not pass through matter, there is no real
quadratic influence, the acceptance is linearly dependent on the the x-position of the muon at decay.
On the other hand, there seems to be a non-negligible quadratic influence on the acceptance of those
particles that pass through matter. More data is required to refine and substantiate these findings.

Table 4: Results giving the influence of the quadratic term on the acceptance for positrons that pass
through matter.

Through Matter (Fig. 12a) Not Through Matter (Fig. 12b)
Linear

Fit
Quadratic

Fit
Quadratic
Influence

Linear
Fit

Quadratic
Fit

Quadratic
Influence

0.609Ne 0.660Ne 7.7% 0.822Ne 0.823Ne 0.22%

6 Conclusion

This note investigated the possibility of a quadratic term in the positron acceptance (detection rate) as
a function of muon x-position at the time of muon decay and the influence that it could have. This is
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part of a larger investigation into the effect of the coherent betatron oscillation (CBO) on the statistical
uncertainties in the system.

Numerically we studied three beam shape functions, constant, quadratic, and Gaussian. We can
see that although a second (or possibly more in the case of a Gaussian beam shape) frequency in the
acceptance does exist, the amplitude of that frequency is very small compared to the primary frequency.

Next, through particle tracking, the acceptance was found as a function of muon x-position at
the time of decay. Although more data is needed, in addition to the removal of some simplifying
assumptions, they acceptance is currently consistent with linear however there does seem to be some
quadratic influence in the acceptance of positrons that pass through matter.

When combining the equations found from the analytical analysis with the fit functions found in
the tracking, we see that there is very little quadratic influence in the acceptance for positrons that do
not pass through any matter, ≈ 0.22%, whereas the quadratic influence on those positrons that pass
through matter is ≈ 7.7%. This tells us that we need more data and higher precision to come to a
conclusive result, therefore it must land in the realm of ART.

Future work will include not only removing simplifying assumptions, but determining the acceptance
as a function of x-prime, y-position, y-prime, and muon spin. In addition, the asymmetry and phase
(Eqs. 3,4) dependence on phase-space position and spin will also be investigated.

A Muon Phase-Space Data

The muon phase-space data was provide by David Rubin of Cornell. Figs. 13, 14 show the muon x,
x-prime and y, y-prime phase-spaces and a histogram of the muons’ longitudinal momentum.

(a) x, x-prime phase-space. (b) y, y-prime phase-space

Figure 13: Muon phase-space data for stored muons after 100 µs.
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